Graph of a Graph

نویسنده

  • Sunilkumar M. Hosamani
چکیده

Let S be the set of minimal dominating sets of graph G and U, W ⊂ S with U ⋃ W = S and U ⋂ W = ∅. A Smarandachely mediate-(U,W ) dominating graph D m(G) of a graph G is a graph with V (D m(G)) = V ′ = V ⋃ U and two vertices u, v ∈ V ′ are adjacent if they are not adjacent in G or v = D is a minimal dominating set containing u. particularly, if U = S and W = ∅, i.e., a Smarandachely mediate-(S, ∅) dominating graph D m(G) is called the mediate dominating graph Dm(G) of a graph G. In this paper, some necessary and sufficient conditions are given for Dm(G) to be connected, Eulerian, complete graph, tree and cycle respectively. It is also shown that a given graph G is a mediate dominating graph Dm(G) of some graph. One related open problem is explored. Finally, some bounds on domination number of Dm(G) are obtained in terms of vertices and edges of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs

Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a graph with vertex set V , in which two vertices are adjacent if and only if they have a common neighbor in G. In this paper, we obtain characteristics of congraphs under graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product, and Graph join, and relations between Cayley graphs and its c...

متن کامل

The Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product

The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...

متن کامل

$Z_k$-Magic Labeling of Some Families of Graphs

For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic}  if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$  defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$  the group of integers modulo $k...

متن کامل

SOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH

In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...

متن کامل

THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...

متن کامل

A note on the order graph of a group

 The order graph of a group $G$, denoted by $Gamma^*(G)$, is a graph whose vertices are subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $|H|big{|}|K|$ or $|K|big{|}|H|$. In this paper, we study the connectivity and diameter of this  graph. Also we give a relation between the order graph and prime  graph of a group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013